Although it is not the purpose here to consider the analysis of the interdiffusion process by this X-ray technique (this will be published elsewhere) it is of interest to note briefly some of the more striking conclusions from the results presented. First it is seen from Figs. 4 and 5 that although significant interdiffusion has already occurred in 5 min., after 36,000 min. the homogenization is far from complete. Secondly, Ni diffuses into Cu much more rapidly than Cu into Ni; after 5 min. no pure Cu remains although there is considerable pure Ni.

Summary

The broadening of a diffraction line from an inhomogeneous binary solid solution has been quantitatively analyzed to yield the composition distribution, N(x), defined as the number of unit cells of composition x. The analysis hinges on the minimization of diffraction-line instrumental broadening. Stokes's Fourier method of instrumental-effect minimization has been reviewed. An alternative method has also been described; it is shown that by choosing a high angle reflection and mathematically eliminating the $K\alpha_2$ component the instrumental effect can be made negligible in cases of moderate dependence of lattice parameter on composition. The analysis has been applied to mixed Cu-Ni powders (36 at.% Cu) interdiffused at 780 °C. The results have been presented in the form of diagrams of x versus

$$\int_0^x N(x) \, dx \Big/ \int_0^1 N(x) \, dx$$

which have been shown to be analogous to the description of interdiffusion by the usual concentrationpenetration curve. The average compositions of the resulting inhomogeneous solid solutions have been determined by the X-ray analysis to $\pm 1.5\%$.

The method of analysis by $K\alpha_2$ elimination has been compared with Stokes's Fourier method with the conclusion that the former, in the example considered, was more reliable and about ten times more rapid.

References

BEEVERS, C. A. (1952). Acta Cryst. 5, 670.

- EKSTEIN, H. & SIEGAL, S. (1949). Acta Cryst. 2, 99.
- JAMES, R. W. (1950). The Optical Principles of the Diffraction of X-rays, p. 608. London: Bell.
- JONES, F. W. (1938). Proc. Roy. Soc. A, 166, 16.
- KEATING, D. T. (1959). Rev. Sci. Instrum. 30, 725.
- PEARSON, W. B. (1958). Handbook of Lattice Spacings,
- p. 592. London: Pergamon Press.
- STOKES, A. R. (1948). Proc. Phys. Soc. 61, 382.
- WILCHINSKY, Z. (1951). Acta Cryst. 4, 1.

Acta Cryst. (1960). 13, 909

The Crystal Structure of PuNi₄*

By DON T. CROMER AND ALLEN C. LARSON

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, U.S.A.

(Received 21 December 1959)

The structure of PuNi_4 has been determined by single crystal X-ray methods. The unit cell is monoclinic, space group C2/m with

 $a = 4.87, b = 8.46, c = 10.27 \text{ Å}, \beta = 100^{\circ}.$

There are six formula units per unit cell. Two of the six Pu atoms have a coordination essentially identical to that of the Pu in PuNi₅. The other Pu atoms have a coordination somewhat similar to the Pu in PuNi₅. The PuNi₄ structure can be obtained by removing the Ni atoms at $z = \frac{1}{2}$ from every third unit cell of PuNi₅ and by slightly shifting the remaining atoms.

Introduction

There are six binary compounds in the Pu-Ni system (Wensch & Whyte, 1951). The structures of PuNi₂, PuNi₅ and Pu₂Ni₁₇ have been reported by Coffinberry & Ellinger (1956). The structure of PuNi has been reported by Cromer & Roof (1959) and that of PuNi₃

by Cromer & Olsen (1959). The structure of PuNi₄, the remaining compound of the series, is the subject of the present report.

Experimental

An alloy containing 78.5 at.% Ni was prepared by melting the components in vacuum and then annealing the resulting ingot at 1240 °C. for 10 hr.

^{*} Work done under the auspices of the U.S. Atomic Energy Commission.

Table 1. Final least-squares parameters for PuNi₄

Atom	x	\boldsymbol{y}	z	$B~({ m \AA}^2)$
Pu ₁	0	0	0	1.59 ± 0.13
Pu,	0.1263 ± 0.0010	0	0.3552 ± 0.0004	1.67 ± 0.10
Ni,	$\overline{0}$	0.3331 ± 0.0011	0	1.99 ± 0.31
Ni,	0.5712 ± 0.0028	0	0.1987 ± 0.0013	1.50 ± 0.28
Nis	0.3199 ± 0.0019	0.2507 ± 0.0009	0.1993 ± 0.0007	1.70 ± 0.18
Ni ₄	$0{\cdot}1422\pm0{\cdot}0020$	$0{\cdot}3300\pm0{\cdot}0007$	0.4066 ± 0.0009	2.11 ± 0.23

The amount of Ni in the alloy was purposely held to somewhat below 80 at.%, the theoretical composition of PuNi₄, in order to ensure that the primary phase would be PuNi₄. Metallographic examination showed that the specimen consisted almost entirely of coarse grained PuNi₄. However, because of the very soft, graphite-like texture of PuNi₄, it was impossible to separate crystals of good quality from the aggregate. After X-ray examination of a number of fragments, one single crystal of poor but usable quality was obtained. Precession photographs were taken of this crystal with Mo radiation ($\lambda = 0.7107$ Å) and the unit cell was found to be monoclinic with

$$a = 4.87 \pm 0.01, \ b = 8.46 \pm 0.02, \ c = 10.27 \pm 0.02 \text{ Å}, \ \beta = 100 \pm 0.1^{\circ}.$$

The systematic extinctions were consistent with space groups C2, Cm or C2/m. No measured density was obtained. The unit-cell volume, however, was consistent with six formula units per unit cell and the calculated density is therefore 11.3 g.cm.⁻³. The structure determination itself is the best evidence for the identity of the compound.

The best crystal was an irregular fragment having the approximate dimensions $0.20 \times 0.03 \times 0.04$ mm. and its longest dimension nearly coincident with the *b* axis. For intensity data this crystal was rotated about the *b* axis and a series of timed exposures was made on a precession camera for each of the zones *hk*0, 0*kl*, *hkh* and *hkh*. Mo K α radiation was used. The intensities were estimated visually and the four sets of data were placed on approximately the same scale by comparing the common 0*k*0 reflections. *Lp* corrections were applied (Waser, 1951) but absorption errors were ignored.

Determination of the trial structure

PuNi₃ had been found to have a structure related to both PuNi₂ and PuNi₅ (Cromer & Olsen, 1959; Cromer & Larson, 1959). It seemed reasonable to expect, therefore, that PuNi₄ would also be structurally related to PuNi₅. Further, Ellinger (1959) had observed that the powder pattern of PuNi₄ was very similar to that of PuNi₅. It was also noted that the *a* and *b* unit-cell dimensions of PuNi₄ are nearly the same as the *a* and *b* dimensions of the orthohexagonal cell of PuNi₅. The assumption was initially made that the space group is C2/m, and because a satisfactory structure was found in this space group the other two space groups were not considered. The 0kl data were used to calculate a Patterson projection. The most prominent vectors indicated that there were linear groups of three Pu atoms, as in PuNi₃, and that the central Pu atom was surrounded by Ni atoms as in PuNi₅. Two Pu₁ atoms were placed in 2a (0, 0, 0; $\frac{1}{2}$, $\frac{1}{2}$, 0) and four Pu₂ atoms in 4i (x, 0, z; etc.) with $z_{\text{Pu}_2} \approx 0.35$. In order to provide a reasonable interatomic distance between the Pu atoms at x, 0, z and \bar{x} , 0, \bar{z} , x_{Pu_2} must be ≈ 0.13 . Pu₁ could be surrounded by Ni atoms as in PuNi₅ by placing four Ni₁ atoms in 4g (0, y, 0; etc.) with $y_{\text{Ni}_1} \approx \frac{1}{3}$, four Ni₂ atoms in 4i with $x_{\text{Ni}_2} \approx 0.57$ and $z_{\text{Ni}_2} \approx 0.20$ and eight Ni₃ in the general position with $x_{\text{Ni}_3} \approx \frac{1}{3}$, $y_{\text{Ni}_3} \approx \frac{1}{4}$ and $z_{\text{Ni}_3} \approx 0.20$. Sixteen of the 24 Ni atoms were thus accounted for. It was consistent with the

Table 2. Observed and calculated structure factors for PuNi₄

If $F_o = 0$, the reflection was obscured by the beam trap. If $F_o < 0$, the reflection was unobserved and the minus sign should be interpreted as 'less than'

0 0000 0000000000000000000000000000000	2000001111112222223333334444455355566666677777778888889999900000111112	$ \begin{array}{c} \mathbf{F_0} \bullet_{3704} \bullet_{90074} \bullet_{10024} \bullet_{10024} \bullet_{10074} \bullet_{1007574} \bullet_{1007574} \bullet_{100744} \bullet_{100744} \bullet_{100744} \bullet_{100744} \bullet_{100744} \bullet_{1007444} \bullet_{1007444} \bullet_{1007444} \bullet_{1007444} \bullet_{1007444} \bullet_{1007444} \bullet_{1007444} \bullet_{10074444} \bullet_{100744444} \bullet_{10074444} \bullet_{100744444} \bullet_{100744444} \bullet_{100744444} \bullet_{100744444} \bullet_{100744444} \bullet_{100744444} \bullet_{1007444444} \bullet_{100744444444} \bullet_{1007444444444} \bullet_{100744444444444444444444444444444444444$	1070330976775338557071100011145075570077472001114505885570671312001114505757011145057570111450575700111450575700111450575700111450575700111450575700111450575700111450575700111450575700111450575700111450575700111450575700111450575700011110000000000	H 0000011111111111111111111111111111111	K 24680113579102468013579024681357024	0 0000000000000000000000000000000000000	F0 1915 5 5 5 5 7 7 2 2 6 5 1 7 7 2 2 6 5 1 7 7 2 3 6 7 7 2 3 6 7 7 2 6 5 1 7 7 2 6 5 1 7 7 7 2 6 5 1 7 7 7 2 6 5 1 7 7 7 2 6 5 1 7 7 7 2 6 5 1 7 7 7 7 2 6 5 1 7 7 7 7 2 6 5 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Fc 20501 22600 22600 22600 11000 119554 4012 2734 4012 2734 4012 2734 4012 2734 4012 2734 4012 2734 4012 2734 4012 27354 27354 27354 27354 27354 27354 273554 273555 273555 27355 27355 27355 273555 27355 27355 27355 27355 27355 27355 27355 27355 27355 27355 27355 27355 27355 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 273555 2735555 2735555 273555 2735555 27355555 2735555 27355555555 2735555555555	H 00000111111122222 2333334444455	K 24680135791024680135790246813	H 00000111111122222 233334444455	C 25300 2530 2530 2530 252 252 252 252 252 252 252 252 252 25	$ \begin{array}{c} F_{C} \\ 7070 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -704 \\ -77 $	H 0 00001111111111111111111111111111111	K 246801357910246801357902468135702	1 0000011111112222223333344444555566	D 20420 373 314 374 <th>$\begin{array}{c} F_{C} & 7 & 7 \\ 2 & 20 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$</th> <th></th>	$ \begin{array}{c} F_{C} & 7 & 7 \\ 2 & 20 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 8 & 0 \\ 8 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 &$	
õ i	12	42	-35																

Patterson projection and packing considerations to place the remaining eight Ni atoms in the general position with $x_{\text{Ni4}} \approx 0.14$, $y_{\text{Ni4}} \approx \frac{1}{3}$ and $z_{\text{Ni4}} \approx 0.40$. Structure factors calculated from this trial structure were in reasonable agreement with the observed structure factors.

It might be of interest to note that for solving this and other structure problems we have found it convenient to use a computer for generating and sorting interatomic vectors. In this way trial structures can be quickly rejected or accepted for further study.

Refinement of the structure

The above trial structure provided starting parameters for a least-squares refinement which was carried out with the aid of an IBM-704 computer. Included as parameters were eleven atomic positions, six isotropic temperature factors and four scale factors,

Fig. 1. Fourier projection of PuNi_4 down the *a* axis. The zero contour is dashed. The contour interval is 10 e.Å⁻² around the Ni atoms and 20 e.Å⁻² about the Pu atoms.

one for each zone. The Thomas–Fermi form factor of Pu was used after subtracting 10 electrons as an approximate correction for anomalous dispersion. The Viervoll & Øgrim (1949) form factor was used for Ni. All reflections were weighted equally. The final posi-

Fig. 2. (a) Several unit cells of $PuNi_5$. The large circles are Pu atoms and the small circles are Ni atoms. (b) The $PuNi_4$ structure in projection down [100]. The x coordinates of the atoms are given inside the circles.

tion and thermal parameters are listed in Table 1 and the observed and calculated structure factors, for which R=8.4%, are listed in Table 2. The standard deviations were estimated in the usual way by inverting the matrix of coefficients in the least-squares normal equations.

An 0kl Fourier projection is shown in Fig. 1.

Discussion of the structure

The various interatomic distances in PuNi₄ are given in Table 3. The standard deviations of Pu-Pu, Pu-Ni and Ni-Ni distances are about 0.01, 0.02 and 0.03 Å, respectively. In Fig. 2(b) the structure of PuNi₄ is shown in projection parallel to the *a* axis. The PuNi₄ structure can be derived from the PuNi₅ structure but not by making substitutions and layer shifts of

Table 3. Interatomic distances in PuNi₄ The number of neighbors of a given kind is in parentheses

Pu ₁ -Pu ₂	3.59(2) Å	Pu ₂ -Pu ₁	3·59(1) Å
-Ni	3.15(2)	-Pu,	3.41(1)
-Ni	3.16(2)	-Ni,	2.89(1)
-Ni	2.81(4)	-Ni,	2.91(1)
–Ni,	2.82(2)	$-Ni_{2}$	2.90(1)
$-Ni_3$	3.16(4)	-Ni,	2.91(1)
-Ni,	3.17(4)	–Ni	2.84(2)
	、 <i>,</i>	-Ni	2.86(2)
		-Ni	2.89(2)
		-Ni	2.89(2)
		*	
Ni ₁ –Pu ₁	3·15(1) Å	$Ni_2 - Pu_1$	2·81(2) Å
$-Pu_1$	3.16(1)	-Pu,	2.82(1)
$-Pu_{2}$	2.89(1)	-Ni,	2.45(2)
$-Pu_2$	2.91(1)	$-Ni_{2}$	2.81(2)
$-Ni_2$	2.45(2)	$-Ni_2$	2.82(1)
$-Ni_3$	2.43(2)	-Ni,	2.45(2)
$-Ni_3$	2.45(2)	-Ni ₃	2.46(2)
-Nia	2.55(2)	3	()
-			
Ni ₃ –Pu ₁	3·16(1) Å	$Ni_4 - Pu_2$	2·84(1) Å
$-Pu_1$	3.17(1)	$-Pu_2$	2.86(1)
$-Pu_2$	2.90(1)	$-Pu_2$	2.89(1)
$-Pu_2$	2.91(1)	$-Pu_2$	2.89(1)
$-Ni_1$	2.43(1)	$-Ni_1$	2.55(1)
$-Ni_1$	2.45(1)	$-Ni_3$	2.51(1)
$-Ni_2$	2.45(1)	$-Ni_3$	2.52(1)
$-Ni_2$	2.46(1)	$-Ni_4$	2.43(1)
$-Ni_3$	2.43(2)	$-Ni_4$	2.55(1)
$-Ni_4$	2.51(1)	$-Ni_4$	2.79(2)
$-Ni_4$	2.52(1)	$-Ni_4$	2.88(1)

the type used to develop PuNi₃ and other similar structures (Cromer & Larson, 1959). Fig. 2(a) shows several unit cells of PuNi₅ (CaCu₅ structure type). In order to derive PuNi₄ from PuNi₅ the layer of atoms at $z=\frac{1}{2}$ in every third unit cell is removed, as indicated by the encircled atoms in Fig. 2(a). This operation changes the symmetry to C2/m with a monoclinic β angle of 90°. The structure is then collapsed in order to fill up the vacated space. The Ni atoms in the layers next to the layer that was removed approach each other and move slightly out of the planes of the Pu atoms. A rotation of 10° about the b axis permits the exposed atoms to assume normal interatomic distances and produces the monoclinic β angle of 100°.

 Pu_1 has two Pu and 18 Ni neighbors in an arrangement essentially the same as the Pu in PuNi₅. Pu₂ has two Pu and 14 Ni neighbors. There are six Ni atoms approximately coplanar with Pu₂ and on one side there are six Ni atoms and one Pu atom. Thus far the coordination is about the same as it is in PuNi₅. However, on the other side of Pu₂ there are only three neighbors, one Pu atom and two Ni atoms, arranged in the form of a triangle. Thus the two Pu neighbors of Pu₂ form an angular rather than a linear group of three. Ni₁, Ni₃ and Ni₄ each have four Pu and eight Ni neighbors arranged in distorted icosohedrons. Ni₂ has three Pu and nine Ni neighbors in a coordination, similar to the twofold Ni in the PuNi₅ structure.

We are indebted to Mr V. O. Struebing for preparation of the alloy.

References

- COFFINBERRY, A. S. & ELLINGER, F. H. (1956). Proceedings of the International Conference on the Peaceful Uses of Atomic Energy, 9, 138. New York: United Nations.
- CROMER, D. T. & LARSON, A. C. (1959). Acta Cryst. 12, 855.
- CROMER, D. T. & OLSEN, C. E. (1959). Acta Cryst. 12, 689.
- CROMER, D. T. & ROOF, R. B. (1959). Acta Cryst. 12, 942.
- ELLINGER, F. H. (1959). Private communication.
- VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.
- WASER, J. (1951). Rev. Sci. Instrum. 22, 563.
- WENSCH, G. W. & WHYTE, D. D. (1951). The Nickel-Plutonium System. Los Alamos Scientific Laboratory report LA-1304.